Los Diagramas de Stiff son un aplicación muy común para representar la química de los recursos hídricos. En un Diagrama de Stiff las concentraciones de los componentes principales representados en miliequivalentes por litro (meq/l) son representados para una muestra. El perfil de los cationes son representados a la izquierda y los aniones a la derecha.
El diagrama permite la comparación rápida de muchos componentes de la calidad del agua entre muchas muestras, mediante la comparación de las formas de los polígonos generados. Sin embargo, hasta ahora no había manera de correlacionar los diagramas con la posición del punto de monitoreo. Este tutorial muestra los códigos y pasos para la realización de un Diagrama de Stiff Georeferenciado utilizando QGIS y Python.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
Caso aplicado de simulación de infiltración en la zona no saturada utilizando el paquete UZF de MODFLOW 6 sobre una grilla Voronoi geoespacial construida con mf6Voronoi. El modelo está en régimen uniforme y transitorio con 3 capas donde la infiltración en la zona no saturada ocurre en la primera capa. Se inserta un punto de observación con distintas profundidades para hacer una evaluación del perfil profundidad-humedad con el tiempo para las distintas tazas de infiltración; por último, se genera una representación 3D de la superficie final de la napa freática con el efecto de las condiciones de borde y la infiltración.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
La tarea de modificar rasters geoespaciales considerando elementos futuros puede ser compleja con las herramientas SIG disponibles. Hemos optimizado la forma en que podemos representar la superficie de embalses futuros (o actuales) en un raster geoespacial. Este tutorial muestra el proceso completo para crear un raster geoespacial (archivo TIF) basado en los contornos de la presa y la extensión del embalse.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
Este tutorial muestra un caso aplicado que cubre la discretización de un modelo usando grillas Voronoi tomando en consideración la red hídrica, el área predictiva de flujo y los límites del modelo. Sobre la base de esta malla se construye un modelo de flujo y transporte en régimen uniforme para la simulación de la pluma contaminante en un periodo de 50 años evaluado cada 5 años. El modelo considera piezómetros y se evalúa el desarrollo de las concentraciones con el tiempo a través de la librería Pandas con Matplotlib. Por último toda la geometría del modelo, condiciones de borde, cargas hidráulicas y concentraciones son visualizadas en 3D con Paraview.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
MODFLOW6 con mf6Voronoi puede manejar la simulación de tareas específicas relacionadas con la industria minera. Ya hemos cubierto la simulación de entradas de agua en el tajo mediante mallas de Voronoi y ahora vamos a modelar la filtración desde una instalación de almacenamiento de relaves. El caso aplicado abarca todos los pasos, desde la construcción de la malla, el modelo de flujo y el modelo de transporte. Los resultados se representan en 2D y se exportan a 3D en formato Vtk.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
Una de las promesas de las mallas de Voronoi en MODFLOW6 Disv es la distribución eficiente de tamaños de celdas, lo que nos permite alcanzar tamaños pequeños en zonas de alto interés, como los pozos, mientras se mantienen celdas más gruesas en áreas de menor interés. Este tipo de mallado presenta algunos problemas que ahora son abordados con mf6Voronoi.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
A veces se requieren modelos regionales como insumo para modelos locales de flujo y transporte. Este es un caso aplicado de modelación de aguas subterráneas a escala regional en el estado de Guerrero, México, que servirá como insumo para futuros modelos locales de abatimiento en tajos y transporte de contaminantes desde la presa de relaves y el depósito de desmonte. El modelo de aguas subterráneas está construido con MODFLOW6 y mf6Voronoi en una serie de Jupyter Notebooks, y los resultados se visualizan con Paraview.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
Ejemplo aplicado de simulación en Phreeqc con múltiples valores de parámetros usando Python y su nueva biblioteca hatariTools. Este ejemplo explora la simulación y el análisis de calcita a partir de diferentes valores de PCO₂(g) en un Jupyter notebook, y crea una representación gráfica de la molalidad de la calcita vs PCO₂(g) utilizando Matplotlib.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
En este tutorial, te guiaremos paso a paso para instalar Rust dentro de tu entorno WSL. Ya sea que seas completamente nuevo en WSL o simplemente quieras una instalación limpia de Rust, esta guía te pondrá en marcha en muy poco tiempo. Cubriremos la instalación de WSL, la configuración de tu distribución de Linux (Ubuntu) y la instalación de Rust.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
Puedes trabajar más rápido y tener más tiempo para analizar los resultados del modelo si el proceso de creación del modelo toma menos tiempo. El diseño del paquete mf6Voronoi está orientado a mejorar la experiencia del usuario optimizando las opciones de creación de mallas y mediante la implementación de plantillas de scripts en Python para mallado, construcción de modelos y más.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
La construcción de modelos de aguas subterráneas complejos y de alto rendimiento requiere una distribución adecuada de las unidades hidrogeológicas en profundidad. Hemos desarrollado un caso aplicado de modelado 3D de unidades hidrogeológicas utilizando datos proporcionados en formato raster (*.tiff).
El tutorial cubre todos los pasos, desde el muestreo de orientación y elevación a partir de datos raster, la conceptualización y configuración del modelo de Gempy en Aquifer App, y finalmente, el posprocesamiento de la litología 3D basada en la elevación superficial.
Los datos de entrada provienen de investigaciones del USGS sobre los sistemas acuíferos en las Cuencas de Williston y Powder River, en Estados Unidos y Canadá.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
Hay muchos temas a tener en cuenta cuando creamos un modelo de flujo de agua subterránea. Uno de los más importantes es representar la información geológica disponible en la distribución de los parámetros hidráulicos. Hemos investigado un flujo de trabajo simple y reproducible para crear un modelo geológico a partir de un shapefile de puntos e insertar las unidades geológicas modeladas en Model Muse con los valores K correspondientes. Este tutorial cubre todo el procedimiento para crear un modelo geológico con Gempy y Aquifer App y los códigos necesarios para crear un archivo de forma xyz que luego se importa en Model Muse con el valor Kx extraído de la tabla de atributos.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
Este es un caso aplicado en el que construimos un modelo geológico solo con información litológica almacenada como un archivo shapefile de puntos. El tutorial cubre todos los pasos desde la generación de ráster (como array de Numpy) para todas las superficies junto con el muestreo de orientación y el formateo de las superficies/orientaciones como archivos de entrada de Gempy. Los datos generados se insertaron en la aplicación Aquifer App que implementa una interfaz para crear modelos de Gempy. Finalmente, la litología y la geometría de la superficie de la capa se exportaron como Vtk para ser representadas en Paraview con los datos iniciales para evaluar la precisión de la simulación.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
La aplicación Aquifer App ofrece una forma amigable, limpia y poderosa de crear scripts de Gempy para el modelamiento geológico. Hemos desarrollado un caso aplicado de un modelo de sistemas petroleros 3D para una parte de la Cuenca Williston, EE. UU., que contiene el Anticlinal de Nesson. La información de la capa superior se proporcionó en formato ráster donde la elevación y la orientación de puntos aleatorios se extrajeron con códigos Python utilizando el paquete Gemgis y se exportaron en formato de archivo de entrada Gempy. En la aplicación Aquifer App se insertaron los archivos CSV procesados y se configuró el modelo geológico con la secuencia geológica correspondiente.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
La aplicación Aquifer ofrece una forma amigable, limpia y poderosa de crear scripts Gempy para modelado geológico. La plataforma también permite a los usuarios ejecutar los scripts y descargar todo el proyecto de modelado que tiene la geometría 3D de las unidades geológicas y fallas en formato Vtk. Este tutorial muestra un caso aplicado de visualización de datos geológicos, creación de modelos, ejecución de modelos, exportación y representación de archivos Vtk en Paraview.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
El acoplamiento de scripts Python con la plataforma Aquifer App nos permite generar modelos geológicos con una versatilidad nunca antes vista. Este es un ejemplo básico de modelado geológico regional en Aquifer App con topografía de superficie a partir de un modelo de elevación digital en formato TIF. El tutorial también realiza una representación 3D de los contactos y orientaciones de la geología de una capa en un cuaderno Jupyter para un mejor análisis de la secuencia geológica.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
La combinación de scripts de Python con la plataforma Aquifer App nos permite generar modelos geológicos con una versatilidad no vista antes. Este es un ejemplo básico de modelado geológico de un anticlinal en Aquifer App que puede crear modelos utilizando Gempy. El tutorial también realiza una representación 3D de los contactos y orientaciones de las capas en un cuaderno de Jupyter para un mejor análisis de la secuencia geológica.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
La delimitación de cuencas hidrográficas y la determinación de redes hídricas son tareas comunes en el análisis hidrológico para cualquier área de interés. Existe un parámetro en la determinación de la red de arroyos que nos permite tener redes hídricas simples que se asemejan a los principales cursos de agua o redes hídricas densas que mapean todos los arroyos permanentes/temporales. Este es un ejemplo aplicado de determinación de red de flujo en nuestra plataforma en línea Hatari Utils, donde puede especificar la cantidad de upstream cells y revisar interactivamente el resultado.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
Las cuencas hidrológicas pueden tener diversidad de formas debido a la morfología y es un desafío tener un proceso que pueda delimitar cuencas con diferentes características en un corto período de tiempo. Hatari Utils es una plataforma online de análisis hidrogeológico que cuenta con una herramienta para la delimitación de cuencas, en este tutorial hemos probado las capacidades de Hatari Utils para delinear una cuenca que tiene un lago interno.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.
Gempy es una biblioteca de código abierto para el modelamiento geologico escrita en Python. La biblioteca es capaz de crear modelos geológicos 3D complejos que incluyen estructuras, redes de fallas y discordancias y puede combinarse con análisis de incertidumbre.
Hatarilabs / Gidahatari ha desarrollado una plataforma online para crear modelos geológicos con Gempy con el mínimo esfuerzo. La herramienta en línea se llama GempyApp y se ejecuta bajo AquiferApp (aquifer.hatarilabs.com). Este tutorial muestra un ejemplo aplicado de modelado geológico de 4 capas con una falla. El tutorial cubre los pasos de entrada de archivos de puntos y orientación, definición de fallas/estratos y secuencia geológica, muestra estadísticas y tablas de datos, ejecuta la interpolación del modelo geológico y representa los resultados.
Suscríbete a nuestro boletín electrónico
Suscríbase a nuestro boletín gratuito para recibir noticias, datos interesantes y fechas de nuestros
cursos en recursos hídricos.