#import the require packages
import flopy
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
#from workingTools import *
#define model name and model path
modelWs = '../Model/'
modelName = 'HillslopeModel_v1'
namFile = modelName+'.nam'
#open the observation file out heads
obsOut = flopy.utils.observationfile.Mf6Obs(modelWs+modelName+'.ob_gw_out_head.csv',isBinary=False)
#create a dataframe for the observation points
totalObsDf = obsOut.get_dataframe().transpose()
totalObsDf = totalObsDf.rename(columns={totalObsDf.keys()[0]:'SimHead'})
totalObsDf = totalObsDf.drop('totim',axis=0)
totalObsDf['ObsHead'] = 0
totalObsDf['Lat'] = 0
totalObsDf['Lon'] = 0
totalObsDf.head()
|
SimHead |
ObsHead |
Lat |
Lon |
HD_OBS_474820122185601 |
1.045374e+02 |
0 |
0 |
0 |
HD_OBS_474851122165301 |
1.084544e+02 |
0 |
0 |
0 |
HD_OBS_474907122194901 |
-1.000000e+30 |
0 |
0 |
0 |
HD_OBS_474909122164401 |
1.096796e+02 |
0 |
0 |
0 |
HD_OBS_474923122195601 |
-1.000000e+30 |
0 |
0 |
0 |
#open the observed data file
obsDf = pd.read_csv('../Txt/HobDf.csv',index_col=0)
obsDf.head()
|
SiteNo |
Latitude |
Longitude |
LatLonDatum |
SurfaceElevation_m |
SiteCode |
ScreenElevation_m |
WTElevation_m |
0 |
12126800 |
47.825556 |
-122.254167 |
NAD83 |
96.6216 |
Obs_12126800 |
NaN |
NaN |
1 |
12128100 |
47.884461 |
-122.299211 |
NAD83 |
124.9680 |
Obs_12128100 |
NaN |
NaN |
2 |
12128130 |
47.909753 |
-122.297894 |
NAD83 |
97.5360 |
Obs_12128130 |
NaN |
NaN |
3 |
474758122192101 |
47.822041 |
-122.298186 |
NAD83 |
119.9810 |
Obs_474758122192101 |
78.2234 |
NaN |
4 |
474820122185601 |
47.814541 |
-122.306520 |
NAD83 |
107.7890 |
Obs_474820122185601 |
39.2090 |
88.1294 |
#look for the observed elevation and coordinates
for index, row in totalObsDf.iterrows():
for index2, row2 in obsDf.iterrows():
if index[7:] == str(row2.SiteNo):
totalObsDf.loc[index,'ObsHead'] = row2.WTElevation_m
totalObsDf.loc[index,'Lat'] = row2.Latitude
totalObsDf.loc[index,'Lon'] = row2.Longitude
#compute the residual and save csv file
totalObsDf = totalObsDf[totalObsDf['SimHead']>0]
totalObsDf['Residual'] = totalObsDf['SimHead'] - totalObsDf['ObsHead']
totalObsDf.to_csv('../Txt/HobDf_Out.csv')
totalObsDf.head()
|
SimHead |
ObsHead |
Lat |
Lon |
Residual |
HD_OBS_474820122185601 |
104.537359 |
88.129400 |
47.814541 |
-122.306520 |
16.407959 |
HD_OBS_474851122165301 |
108.454441 |
115.713800 |
47.813986 |
-122.282630 |
-7.259359 |
HD_OBS_474909122164401 |
109.679565 |
113.885000 |
47.818986 |
-122.280130 |
-4.205435 |
HD_OBS_474953122170201 |
108.180467 |
123.665778 |
47.830930 |
-122.286520 |
-15.485311 |
HD_OBS_475044122155601 |
108.793058 |
80.357000 |
47.845374 |
-122.266797 |
28.436058 |
totalObsDf
|
SimHead |
ObsHead |
Lat |
Lon |
Residual |
HD_OBS_474820122185601 |
104.537359 |
88.129400 |
47.814541 |
-122.306520 |
16.407959 |
HD_OBS_474851122165301 |
108.454441 |
115.713800 |
47.813986 |
-122.282630 |
-7.259359 |
HD_OBS_474909122164401 |
109.679565 |
113.885000 |
47.818986 |
-122.280130 |
-4.205435 |
HD_OBS_474953122170201 |
108.180467 |
123.665778 |
47.830930 |
-122.286520 |
-15.485311 |
HD_OBS_475044122155601 |
108.793058 |
80.357000 |
47.845374 |
-122.266797 |
28.436058 |
HD_OBS_475104122191901 |
55.070670 |
69.384200 |
47.850930 |
-122.323189 |
-14.313530 |
HD_OBS_475106122170101 |
104.033737 |
114.494600 |
47.851485 |
-122.284854 |
-10.460863 |
HD_OBS_475120122162401 |
108.820731 |
123.029000 |
47.855374 |
-122.274576 |
-14.208269 |
HD_OBS_475150122192101 |
40.718962 |
41.590660 |
47.863707 |
-122.323745 |
-0.871699 |
HD_OBS_475328122181901 |
65.566638 |
43.476200 |
47.890929 |
-122.306523 |
22.090438 |
HD_OBS_475334122180401 |
72.714256 |
72.279800 |
47.892596 |
-122.302357 |
0.434456 |
#Create a basic scatter plot with Matplotlib
#A identity line was created based on the minumum and maximum observed value
#Points markers are colored by the residual and a residual colorbar is added to the figure
fig = plt.figure(figsize=(10,8))
x = np.linspace(totalObsDf['SimHead'].min()-5, totalObsDf['SimHead'].max()+5, 100)
plt.plot(x, x, linestyle='dashed')
plt.scatter(totalObsDf['ObsHead'],totalObsDf['SimHead'], marker='o', c=totalObsDf['Residual'])
cbar = plt.colorbar()
cbar.set_label('Residual (m)', fontsize=14)
plt.grid()
plt.xlabel('Observed Head (m)', fontsize=14)
plt.ylabel('Simulated Head (m)', fontsize=14)
fig.tight_layout()